JS 基础 - 虚拟 DOM
参考资料如下:
深度剖析:如何实现一个 Virtual DOM 算法(作者:戴嘉华)
Why Virtual DOM(作者:Sai Kishore Komanduri)
- 为什么需要虚拟DOM
- 实现虚拟DOM
- Diff算法
- 映射成真实DOM
为什么需要虚拟DOM
先介绍浏览器加载一个HTML文件需要做哪些事,帮助我们理解为什么我们需要虚拟DOM。
所有浏览器的引擎工作流程都差不多,如上图大致分5步:创建DOM tree –> 创建Style Rules -> 构建Render tree -> 布局Layout –> 绘制Painting
第一步,用HTML分析器,分析HTML元素,构建一颗DOM树。
第二步:用CSS分析器,分析CSS文件和元素上的inline样式,生成页面的样式表。
第三步:将上面的DOM树和样式表,关联起来,构建一颗Render树。这一过程又称为Attachment。每个DOM节点都有attach方法,接受样式信息,返回一个render对象(又名renderer)。这些render对象最终会被构建成一颗Render树。
第四步:有了Render树后,浏览器开始布局,会为每个Render树上的节点确定一个在显示屏上出现的精确坐标值。
第五步:Render数有了,节点显示的位置坐标也有了,最后就是调用每个节点的paint方法,让它们显示出来。
当你用传统的源生api或jQuery去操作DOM时,浏览器会从构建DOM树开始从头到尾执行一遍流程。比如当你在一次操作时,需要更新10个DOM节点,理想状态是一次性构建完DOM树,再执行后续操作。但浏览器没这么智能,收到第一个更新DOM请求后,并不知道后续还有9次更新操作,因此会马上执行流程,最终执行10次流程。显然例如计算DOM节点的坐标值等都是白白浪费性能,可能这次计算完,紧接着的下一个DOM更新请求,这个节点的坐标值就变了,前面的一次计算是无用功。
即使计算机硬件一直在更新迭代,操作DOM的代价仍旧是昂贵的,频繁操作还是会出现页面卡顿,影响用户的体验。真实的DOM节点,哪怕一个最简单的div也包含着很多属性
虚拟DOM就是为了解决这个浏览器性能问题而被设计出来的。例如前面的例子,假如一次操作中有10次更新DOM的动作,虚拟DOM不会立即操作DOM,而是将这10次更新的diff内容保存到本地的一个js对象中,最终将这个js对象一次性attach到DOM树上,通知浏览器去执行绘制工作,这样可以避免大量的无谓的计算量。
实现虚拟DOM
我们来实现一个虚拟DOM。例如一个真实的DOM节点:代码见仓库里的src/firstStep
1 | <div id="real-container"> |
用js对象来模拟DOM节点如下:
1 | const tree = Element('div', { id: 'virtual-container' }, [ |
用js对象模拟DOM节点的好处是,页面的更新可以先全部反映在js对象上,操作内存中的js对象的速度显然要快多了。等更新完后,再将最终的js对象映射成真实的DOM,交由浏览器去绘制。
那具体怎么实现呢?看一下Element方法的具体实现:
1 | function Element(tagName, props, children) { |
第一个参数是节点名(如div),第二个参数是节点的属性(如class),第三个参数是子节点(如ul的li)。除了这三个参数会被保存在对象上外,还保存了key和count。
有了js对象后,最终还需要将其映射成真实的DOM:
1 | Element.prototype.render = function() { |
上面都是自解释代码,根据DOM名调用源生的createElement创建真实DOM,将DOM的属性全都加到这个DOM元素上,如果有子元素继续递归调用创建子元素,并appendChild挂到该DOM元素上。这样就完成了从创建虚拟DOM到将其映射成真实DOM的全部工作。
Diff算法
我们已经完成了创建虚拟DOM并将其映射成真实DOM的工作,这样所有的更新都可以先反映到虚拟DOM上,如何反映呢?需要明确一下Diff算法。
两棵树如果完全比较时间复杂度是O(n^3),但参照《深入浅出React和Redux》一书中的介绍,React的Diff算法的时间复杂度是O(n)。要实现这么低的时间复杂度,意味着只能平层地比较两棵树的节点,放弃了深度遍历。这样做,似乎牺牲了一定的精确性来换取速度,但考虑到现实中前端页面通常也不会跨层级移动DOM元素,所以这样做是最优的。
我们新创建一棵树,用于和之前的树进行比较,代码见仓库里的src/secondStep:
1 | const newTree = Element('div', { id: 'virtual-container' }, [ |
只考虑平层地Diff的话,就简单多了,只需要考虑以下4种情况:
第一种是最简单的,节点类型变了,例如下图中的P变成了h3。我们将这个过程称之为REPLACE。直接将旧节点卸载(componentWillUnmount)并装载新节点(componentWillMount)就行了。
(为简单起见上图隐藏了文本节点)
旧节点包括下面的子节点都将被卸载,如果新节点和旧节点仅仅是类型不同,但下面的所有子节点都一样时,这样做显得效率不高。但为了避免O(n^3)的时间复杂度,这样做是值得的。这也提醒了React开发者,应该避免无谓的节点类型的变化,例如运行时将div变成p就没什么太大意义。
第二种也比较简单,节点类型一样,仅仅属性或属性值变了。
1 | renderA: <ul> |
我们将这个过程称之为PROPS。此时不会触发节点的卸载(componentWillUnmount)和装载(componentWillMount)动作。而是执行节点更新(shouldComponentUpdate到componentDidUpdate的一系列方法)。
1 | function diffProps(oldNode, newNode) { |
第三种是文本变了,文本对也是一个Text Node,也比较简单,直接修改文字内容就行了,我们将这个过程称之为TEXT。
第四种是移动,增加,删除子节点,我们将这个过程称之为REORDER。具体可以看这篇虚拟DOM Diff算法解析。程序员写代码很简单:$(B).after(F)。但如何高效地插入呢?简单粗暴的做法是:卸载C,装载F,卸载D,装载C,卸载E,装载D,装载E。
我们写JSX代码时,如果没有给数组或枚举类型定义一个key,就会看到下面这样的warning。React提醒我们,没有key的话,涉及到移动,增加,删除子节点的操作时,就会用上面那种简单粗暴的做法来更新。虽然程序运行不会有错,但效率太低,因此React会给我们一个warning。
如果我们在JSX里为数组或枚举型元素增加上key后,React就能根据key,直接找到具体的位置进行操作,效率比较高。
常见的最小编辑距离问题,可以用Levenshtein Distance算法来实现,时间复杂度是O(M*N),但通常我们只要一些简单的移动就能满足需要,降低点精确性,将时间复杂度降低到O(max(M, N)即可。具体可参照采用深度剖析:如何实现一个 Virtual DOM 算法里的一个算法一文。或自行阅读例子中的源代码
最终Diff出来的结果如下:
1 | { |
映射成真实DOM
虚拟DOM有了,Diff也有了,现在就可以将Diff应用到真实DOM上了。代码见仓库里的src/thirdStep
深度遍历DOM将Diff的内容更新进去:
1 | function dfsWalk(node, walker, patches) { |
具体更新的代码如下,其实就是根据Diff信息调用源生API操作DOM:
1 | function applyPatches(node, currentPatches) { |
虚拟DOM的目的是将所有操作累加起来,统计计算出所有的变化后,统一更新一次DOM。其实即使不懂原理,业务代码照样写,但理解原理后,出了什么新东东才能快速跟上。